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 Súrlódási tényező azonosítása kormányzási nyomaték alapján 
Identifying the coefficient of friction based on the steering torque 
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1. Végezzen szakirodalmi kutatást és mutassa be milyen megoldások léteznek a kerék-talaj kapcsolat 
súrlódási tényezőjének azonosítására/becslésére! 
2. Egy egyszerű gumimodellt felhasználva készítsen modell alapú becslő algoritmust a súrlódási 
tényező kormányzott keréken történő azonosítására! 
3. Alkalmazzon egy gépi tanulás alapú módszert a feladat megoldására! 
4. Numerikus szimulációk segítségével hasonlítsa össze a modell alapú és a gépi tanulás alapú becslő 
algoritmusok teljesítményét! 
5. Tegyen javaslatot egy laboratóriumi kísérleti összeállításra, amellyel mérések végezhetők 
a kormányzott kerék súrlódási tényezőjével kapcsolatban! 
6. Foglalja össze eredményeit magyar és angol nyelven! Készítsen poszter összefoglalót a munkáról! 
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Abstract

For precise vehicle motion control, accurate information about the tire-ground relation-
ship is essential. However, the friction properties are changing with time, therefore the
identification process is highly complex [1]. The self-aligning torque induced in the con-
tact patch of a steered tire is in close connection with the coefficient of friction. This
phenomenon offers a possibility to estimate the friction properties based on the measured
steering torque. The goal of this thesis is to analyze the dynamic effects in the contact
region of an elastic tire and the ground.

The so-called brush tire model [2] was selected for the investigation, which is a widely
used, simplified analytical model that explains the forces caused by the tire deformation.
Based on the brush model, a calculation method to estimate the coefficient of friction is
derived in the thesis.

Beside the analytic estimation, the use of machine learning methods was also investi-
gated. In this thesis, a simpler neural network was trained to estimate the coefficient of
friction. Along with the more “classical” machine learning methods, a scientific machine
learning (SciML [3]) process was also implemented, which is a relatively new research area.
The method is based on data-driven machine learning as well as model-based mechanical
formulas, in such way that the accuracy of the estimation can be enhanced. In the the-
sis, the nonlinear equation for the coefficient of friction was complemented with a neural
network-based learning algorithm, in order to compensate the inaccuracies resulting from
the numerical computations and the measurement noise.

The results of the presented estimation methods were compared based on different
aspects: accuracy, run time, robustness, etc. The methods were tested with simulations
as well as measurements. The measured data-sets were gathered with an experiment
set-up manufactured for this purpose.
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Notations

The table contains the names of the notations that occur several times, and in case of
physical quantities, its unit of measurement. The designation of each quantity is, where
possible, the same as that accepted in the domestic and international literature. An
explanation of the rarely used notations can be found at their first location.

Latin letters

Notation Name, comment, value Dimension
a contact patch half-length m
bt torsional damping Nms
e caster length (trail) m
k distributed lateral tire stiffness N/m2

q lateral deformation of the tire m
FN normal force N
J mass moment of inertia kgm2

M steering torque Nm
Mz self aligning torque Nm

Greek letters

Notation Name, comment, value Dimension
µ coefficient of friction 1
ψ yaw angle rad
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1 Introduction

For precise vehicle motion control, accurate information about the tire-ground relationship
is essential. However, the friction properties are not observable, therefore it requires
special methods to estimate the coefficient of friction. In the literature, several methods
can be found, but none of them provides an accurate, fast, and robust technique, thus the
development of an algorithm, that fulfills the above mentioned criterion, is an important
topic.

The self-aligning torque induced in the contact patch of a steered tire is in close con-
nection with the coefficient of friction. This phenomenon offers a possibility to estimate
the friction properties based on the measured steering torque. This thesis aims to present
three methods for estimating the coefficient of friction between the road surface and the
tire based on analyzing the dynamic effects in the contact region. The first method solely
relies on the analytic modeling of the tire-ground contact. The second method is based
on a machine learning technique, neglecting the physics-based part of the system. And
finally, the third method combines the advantages of the previous two with a relatively
new method in the field of machine learning.

While physics-based modeling is known to provide reasonably accurate solutions for
centuries, the field of data-driven modeling with machine learning started to be applied
in the last 40-50 years. Although we can find the appropriate equations that describe
the dynamics of elastic tires, the modeling is based on assumptions and neglection, which
cause errors. In contrast, machine learning techniques often provide accurate solutions,
but the inner structure of the network is hard to see through, and the results are hard to
interpret on a physical level. Scientific machine learning (SciML) combines physics-based
modeling with data-driven approximations, therefore providing more accurate results,
because the unmodeled effects are compensated.

1.1 Structure of the thesis

The thesis are categorised into different sections, as follow. In Section 1, the studies, that
deal with the subject of estimating the coefficient of friction between the road surface and
the tire, are presented and reviewed. A few different methods have been developed by
researchers, but none of them is able to provide a quick and robust technique to identify
the friction properties accurately. Later on, these methods are listed and categorised, also
the advantages and disadvantages are discussed for each method.

In Section 2, the investigated mechanical system, the so-called towed wheel model is
introduced, then an analytic tire model - the brush tire model - is being discussed. A
simulation environment is developed based on the brush model, in order to analyze the
dynamics of the system.

In Section 3, an estimation method is derived, based on the analytic brush tire model.
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First, the deformation of the center line of an elastic tire is expressed with an analytic
function, then the estimation process is presented with the results on simulated data sets.

Section 4 presents the other two estimation methods. After a brief introduction to
artificial neural networks, an estimation technique is discussed using neural networks.
Then, a relatively new topic is discussed, namely the field of scientific machine learning,
which effectively combines data-driven modeling with physics-based equations. Within
SciML, a new method is proposed to solve nonlinear dynamical problems. The results of
all three estimation algorithms are compared on simulation data.

In Section 5, an experiment process is discussed. An already established measurement
set-up at the Department of Applied Mechanics was modified, in order to test the proposed
estimation algorithms on measured data. After discussing the experiment process, the
results of the estimations are compared based on different aspects.

In Section 6, the achieved results are summarized, and the final conclusions are drawn.
The possible practical applications and the options for further development are also dis-
cussed.

1.2 Overview of the literature

The main inspiration of this thesis was the self-balancing motorcycle developed by Honda
[4] (illustrated in Figure 1.1), which have been first unveiled in 2017. The motor is able
to stabilize itself, when standing still (with no longitudinal motion) using the Honda
Moto Riding Assist technology. The motorcycle is balanced by the steering assist system,
instead of using gyroscopes as other companies did previously. This industrial research
area inspired the topic of the thesis, because knowledge about the frictional relation
between the road surface and the elastic tire would provide important information for
such steering control task. Similarly to the dynamical problem, that the Honda researchers
faced, in this thesis an estimation method for the coefficient of friction between the road
and the tire is developed for a vehicle with zero longitudinal velocity.

Just as the mentioned self-balancing motorcycle, other problems in vehicle dynamics
would benefit greatly with accurate estimation of the frictional properties in the contact
region of road surface and elastic tires. Knowledge about the coefficient of friction makes
vehicle control systems more robust and accurate, therefore several studies have been
done, in order to develop an estimation method for the friction parameters of tires. In the
literature, several estimation approaches can be found, that can be categorised into two
groups: cause-based and effect-based techniques [6]. Different methods require different
sensors and calculation methods, thus each estimation process has different drawbacks
and advantages, which are summarized in Table 1.1.

Cause-based estimations in general utilize some kind of image recognition method in
order to provide an estimation for the frictional properties of the road. Kuno and Sugiura
proposed a system based on CCD cameras that provides information about road surface
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Figure 1.1: Self-balancing motorcycle developed by Honda [5].

conditions [7]. Although the method proved to be reliable during certain conditions, it
only calculates from the road surface gloss, which is not the only factor for identifying
the coefficient of friction. Holzmann et al. in [8], developed a method based on generic
luminance, with sound measurements acquired via a microphone to further improve the
reliability of the system. The technique proved to be more accurate, than the previously
proposed methods, but still had some drawbacks. In general, vision-based predictions
have several possibilities in store for the future, with rapidly improving vision recognition
software, but currently, they are not reliable in bad lighting. Another cause-based esti-
mation technique can be found in several commercial vehicles: the road condition can be
estimated based on the ambient temperature. This technique does not provide an exact
value for the coefficient of friction, but can be used as a warning system for the driver.
The advantages of cause-based methods are that the friction properties of the road sur-
face can be predicted ahead, thus, important information can be supplied to the control
systems of the vehicle (e.g. ABS control or even the steering assistant control system).
Another advantage of these techniques is that the coefficient of friction can be estimated
without physical excitation, but they are not taking into account all the factors to provide
an accurate estimation for the coefficient of friction, for example, knowledge about the
tire: tire type, tire pressure, and so many more aspects are not utilized.

Effect-based techniques provide information resulting from the response of the system
to different road conditions. For example, Umeno et al. in [9], proposed a tire vibration
model (shown in Figure 1.2), that monitors the longitudinal velocity of the tires to esti-
mate the tire-road friction. The frequency characteristics of the wheel speed is measured,
then the coefficient of friction is estimated online, using recursive least squares method.
The technique is applicable for rolling tires, but in this thesis, tires are investigated with

3



Category Working principle Advantages Drawbacks

Cause-based Image recognition Can predict the friction
properties ahead

Bad lighting de-
creases reliability

Cause-based Easy to implement Based on ambient tem-
perature

Only gives a warn-
ing

Effect-based Vibration model No special sensors
needed

High frequency
noises

Effect-based Vehicle dynamical
calculations

Easy implementation to
ADAS No drawbacks

Effect-based Based on self-
aligning torque

Easy implementation to
EPAS No drawbacks

Table 1.1: Summarized estimation methods for the coefficient of friction, that can be
found in the literature.

zero longitudinal motion, therefore this method could not be applied. Apart from that,
this method suffers from high frequency noises.

Figure 1.2: The vibration model proposed in [9].

Calculations based on vehicle dynamics can also provide an estimation of the coefficient
of friction. For example, larger slip angle occurs on slippery roads (e.g. on ice), than dur-
ing normal operation. Estimation techniques based on vehicle dynamics usually measure
yaw rate, lateral acceleration, and vehicle speed. Most researchers focus on describing
the lateral dynamics of the vehicle by using some kind of vehicle model, while the friction
forces are taken into account by using a tire model. Hahn, Rajamani and Alexander
developed a method for tire-road friction coefficient estimation that calculates the lateral
dynamics of the car by processing GPS (global positioning system) signals. The parame-
ters of the tire are calculated real-time by using the so-called tire brush model, then the
coefficient of friction was expressed as a function of slip angle, normal force and cornering
stiffness. Also based on vehicle dynamical approaches, Ray proposed a Kalman-Bucy
filter and Bayesian hypothesis selection to estimate the state and tire forces of an eight-
degree-of-freedom vehicle model [10]. The technique is based on inertial sensor data and
after the parameter and state estimation, the coefficient of friction is calculated based on
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a statistical model using the maximum likelihood method. Although the estimation of
friction properties based on vehicle dynamical approaches is an interesting and promising
field of research, in this thesis, the goal is to provide an estimation algorithm for vehicles
with zero longitudinal velocity, therefore these methods could not be applied.

Along with vehicle dynamical measurement signals, the self-aligning torque of tires is
recently used in the control schemes of some driver assistant systems. Electronic power-
assisted steering (EPAS) made the real-time calculation of the self-aligning torque possi-
ble. Previously both Mitsubishi [11] and Toyota [12] released publications about calcu-
lating the self-aligning torque based on available signals of the EPAS system. However
friction estimation methods based on the self-aligning torque often assume moving ve-
hicles and the states are estimated with the help of a vehicle model, for example, Ahn,
Peng and Tseng proposed a method, where the coefficient of friction is estimated using the
self-aligning torque of the tire [6], but during the process, non-zero longitudinal velocity
was assumed, therefore this technique could not be applied in this thesis.

The found methods either used signals, that were unavailable in the investigated case
or were not derived for cases with zero longitudinal velocity, therefore it was necessary
to develop a new estimation process. In this thesis, the possible approximations of the
coefficient of friction are examined based on only monitoring the lateral dynamics of elastic
tires with no longitudinal motion. I would like to emphasize that this thesis is built on a
previous paper [13], that has been registered to the Students’ Scientific Conference (TDK)
at the Budapest University of Technology and Economics.
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2 Modeling and simulation of the investigated me-
chanical system

Figure 2.1: Axonometric (left) and side (right) view of the caster-wheel system.

To investigate the tire-ground contact, we use the so-called towed wheel model. In
Figure 2.1, the mechanical system is illustrated with the coordinate system and some
of the geometrical parameters. In order to describe the tire deformation, the (x, y, z)
coordinate system is used. Its origin is fixed to the center of the tire-ground contact
patch, while the x and y axes are aligned to the longitudinal and lateral directions of the
wheel, respectively. The z-axis is normal to the plane of the ground.

In the side view of the mechanical system (right panel of Figure 2.1), the most relevant
geometrical parameters regarding the elastic tire are highlighted. The length of the contact
patch is denoted by 2a. The endpoints of the contact region, where x = a are called the
leading edge (L), and the x = −a points are called the rear edge (R). The system is
actuated with the steering torque M as shown in Figure 2.1.

In the right panel of Figure 2.1, the axis of revolution is illustrated with a dotted line.
The point, where this line crosses the x-axis, is defined as point A. The distance between
the center point of the contact patch and the point A is called caster length (or trail)
and is denoted by e. The mass moment of inertia of the steered caster-wheel system with
respect to kingpin axis is considered.

In this work, only the quasi-static case is modeled, where the longitudinal velocity of
the system is zero (v = 0) and the rotational motion of the wheel is described by steering
angle (or yaw angle) ψ(t), which motion induces the deformation of the tire.
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2.1 The brush tire model

There are different approaches to model the tire-road relationship. Starting from the
1940s, the vehicle industry showed more and more interest in tire modeling, therefore the
first mechanical models were introduced in that time period [1]. Later on, researchers
focused more on finding empirical formulas that describe the tire forces. Nowadays, with
the advanced computation efforts, combined tire models are being introduced, using both
physical models and empirical formulas, moreover finite element methods are used to
validate these modern theories.

Figure 2.2: Schematic view of the brush tire model. The leading edge is noted by L and
the rear edge by R. The in-plane deformation within the contact patch is also illustrated.

For the investigations, the brush tire model was selected [2], which is a popular an-
alytical approach to model torques and forces resulting from the deformation of tires.
Although more complex, thus more accurate analytical models can be found in the liter-
ature (e.g. the stretched string model [14]), the brush model is simple enough to develop
a real-time estimation method for the coefficient of friction based on the equations that
can be derived from this model. The main advantage of analytic approaches is that they
are based on physical principles, therefore no experimental data is needed to describe the
system. The schematic view of the brush tire model can be seen in Figure 2.2. The model
consists of tread elements (also called bristles) connected to the carcass. The carcass is
represented as a rigid disk. The thread elements are modeled as linear springs and their
deformation are independent from each other, therefore outside of the contact patch, zero
deformation can be assumed.
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An in-plane model of the brush model can be defined, where the deformation of the
elastic bristles are calculated in the x − y plane, as shown in Figure 2.2 and 2.3. Inside
the contact patch, the deformation is limited by the available friction between the treads
and the road surface. Assuming parabolic normal force distribution (which assumption
was proven by measurements in [15]) in the contact region, the limit of the deflection (qcr)
is also parabolic

q±
cr = ±3FNµ

4a3k

(
a2 − x2

)
, (2.1)

where FN is the normal force, µ is the coefficient of friction, and k [N/m2] is the distributed
lateral stiffness of the elastic bristles (it is assumed to be homogeneous around the carcass).

Figure 2.3: In-plane model of the tire brush model, in case of non-zero longitudinal
velocity.

Originally, the brush tire model was developed to model tire forces in case of non-zero
longitudinal vehicle velocity. In this work, the concept is used to model tire deformations
in a quasi-static case, where the longitudinal speed is assumed to be zero. In Figure
2.3, the deformation of an elastic tire is illustrated by the original idea with non-zero
longitudinal speed. The sliding and sticking regions within the contact patch are also
shown in Figure 2.3. Tire elements enter the contact patch at the leading edge L with
zero deformation. In the quasi-stationary case, the brush elements start to be deformed
according to the side slip angle α, which measures the angle of the wheel center point
velocity relative to the wheel center plane. When the deformation of an element reaches
the limit of deflection, it enters the sliding zone, and their deformation is limited by the
above defined qcr. In the sticking region, the deformation of the bristles can be described as
qr(x) = tanα · (x− a). It is important to emphasize that qr is only valid in this particular
case, later on the accurate deformation functions will be derived. In an arbitrary position
x, the deformation of the tread elements (q) can be expressed as

q(x) =

q
−
cr, when sliding,
qr, when sticking.

(2.2)
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The deformation of the elements causes a torque, namely the self-aligning torque, that
acts against the steering torque. Assuming the deformation function is known for t ∈
[t0, tend], the self aligning torque can be expressed as

Mz(t) =
∫ a

−a
k · q(x, t) · (x− e) dx . (2.3)

2.2 Numerical simulations based on the brush model

For the investigation of the tire-ground relation, a simulation environment was set up
based on the brush model. Based on Figure 2.4, let us consider an arbitrary point P in
the sticking region. The wheel is towed by the rigid caster with constant (zero) velocity
in the X direction. The lateral deformation of the tire can be described with the q(x, t)
function. It is known that the kinematic constraint of sticking requires the absolute
velocity to be zero, therefore vP = 0.

Figure 2.4: Illustrating the mechanical system for deriving the equation for the kinematic
constraint of sticking.

Using the notations of relative kinematics

vP20 = vP10 + vP21, (2.4)

where vP20 is the absolute velocity of point P , vP10 is the carrier velocity and vP21 is the
relative velocity.

The absolute velocity of the carcass, or in other words, the carrier velocity of the tire,
can be expressed as

vP10 = vA10 + ω10 × rAP . (2.5)

Since the towing speed is zero in our study, therefore vA10 = 0. As a result, vP10 can
be expressed in the (x, y, z) coordinate system as

vP10 =


0
0
ψ̇

×


− (e− x)
q(x, t)

0

 =


−q(x, t) · ψ̇

− (e− x) · ψ̇
0

 (2.6)
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The relative velocity between the tire and the carcass can be attained by the time
derivation of the relative position vector rP21, as

d
dtrP21 = d

dt


x

q(x, t)
0

 =


ẋ

q̇(x, t) + q′(x, t) · ẋ
0

 , (2.7)

where □̇ notes the partial derivative with respect to time and □′ notes the partial deriva-
tive with respect to coordinate x. Thus the time derivative of q(x, t):

d
dtq(x, t) = ∂

∂t
q(x, t)︸ ︷︷ ︸
q̇(x,t)

+ ∂q(x, t)
∂x︸ ︷︷ ︸
q′(x,t)

· ∂x
∂t︸︷︷︸
ẋ

. (2.8)

From (2.7), the kinematic constraint equations of sticking can be expressed as

− q(x, t) · ψ̇ + ẋ = 0, (2.9)
− (e− x) · ψ̇ + q̇(x, t) + q′(x, t) · ẋ = 0, (2.10)

where x ∈ [−a, a], assuming the whole contact region is sticking.

From (2.9), the translational velocity can be determined:

ẋ = q(x, t) · ψ̇(t). (2.11)

From (2.10), the differential equation for the lateral deformations of the elastic tire
elements can be expressed as

q̇(x, t) = (e− x) · ψ̇(t) − q′(x, t) · q(x, t) · ψ̇(t), (2.12)

where the last term is nonlinear. Considering small deformations and motions, it repre-
sents a third-order small term that can be neglected in the analysis.

The equation of motion for the caster-wheel system can be expressed using Newton’s
second law, as

JAψ̈(t) = −btψ̇(t) −Mz(t) +M(t), (2.13)
where JA is the mass moment of inertia with respect to point A, bt is the torsional damping
of the kingpin, Mz is the self-aligning torque of the tire and M is the steering torque.

The governing equation of the system consists of the integro-differential equation (2.13),
where the self-aligning moment can be calculated by (2.3), while the lateral deformation is
described by the partial differential equation (2.12). Moreover, the sliding in the contact
patch is also considered since the deformation is maximized within the contact patch
based on (2.1). The equations necessary for the numerical simulation can be summarized
as

JAψ̈(t) = −btψ̇(t) −
∫ a

−a
k · q(x, t) · (x− e) dx+M(t), (2.14)

q̇(x, t) ≈ (e− x) · ψ̇(t), (2.15)

|q(x, t)| ⩽ 3FNµ
4a3k

(
a2 − x2

)
, ∀ t ∈ [t0, tend] . (2.16)
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2.3 Results of simulation

For the numerical simulations, the steering torque input has to be defined by the user.
The parameters used in the simulations are summarized in Table 2.1.

Parameter Notation Value

Caster length (trail) e 0.01 m
Contact patch half-length a 0.02 m
Lateral tire stiffness k 60000 N/m2

Mass moment of inertia with respect to A JA 0.1 kgm2

Torsional damping bt 0.4827 Nms
Vertical tire load FN 180 N
Coefficient of friction µ 0.5

Table 2.1: List of parameters used in the numerical simulations.

The simulation was set up to calculate the deformation of the contact patch at every
time step, and after the simulation procedure, an animation shows the results. An ex-
ample steering torque input is shown in Figure 2.5, with the time instants, for which the
deformation function q(x, t) is illustrated in Figure 2.6.

Figure 2.5: Results of the numerical simulation, regarding the yaw angle, angular ve-
locity, and steering torque.

It is visible in Figure 2.5, that there was a direction change in the angular motion at
about t = 1.25 s, and then at t = 2.4 s. In Figure 2.6 the first deformation function
is shown at t = 0.5 s, where three fragmentation zones appear in the contact patch.
Then after the first direction change, at t = 2.75 s it is shown that five zones are present
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in the contact patch. Between the first and second direction change, the tire was not
steered enough to terminate the fourth and fifth zones, therefore after the second change
of rotational direction, another two deformation zones are generated, as it is shown at
t = 3 s. Then the tire is turned continuously in the same direction, hence by the end of
the simulation, only three fragmentation zones remain, as it is illustrated at t = 5.1 s.
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Figure 2.6: The deformation function of the center-line of the tire, illustrated at the
given time instants.

The above discussed simulation environment made it possible to test the later derived
friction estimation methods. The calculation procedure was later implemented into the
simulation scripts, therefore it is possible to compare the identified coefficient of friction
with the simulation values, within the simulation tool.
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3 Estimation of the coefficient of friction based on
the brush tire model

Three methods are being derived for estimating the coefficient of friction between the
tire and the ground. The first method is based on an analytic tire model - namely the
previously introduced brush tire model. The second method is based on a neural network
machine learning algorithm, therefore the coefficient of friction is estimated by data-driven
modeling, and the knowledge about the physical system is neglected. The third algorithm
incorporates the principle of the previous two, besides calculating from the physical model
of the system, the unmodeled effects are compensated with a machine learning technique.

In the previous section, the brush tire model was introduced in order to model the
self-aligning torque resulting from the deformation of the tire. Although the method was
originally developed for vehicles with longitudinal motion, the principle of the mechanical
model remains the same, when the wheel is standing still and the only actuation is the
steering torque.

The principle of the estimation method is based on (2.14). Assuming ψ̇(t), ψ̈(t), M(t)
can be measured and JA, k, bt, a, e constants are known, the only unknown in the
equation of motion is the deformation function of the contact line. It was previously
discussed that the deflection of the elastic elements is dependent on the coefficient of
friction between the ground and the tire. Assuming q(x, t) can be expressed as a function
of the friction coefficient and known or measured physical properties, µ could be calculated
theoretically. In the following chapter, this method will be derived, later on, it will be
tested with simulated and measured signals.

3.1 Analytical approximation for the contact line deformation
function

From (2.14), it is clear that the first task is to express the deformation function with the
coefficient of friction. From now on, at t = 0 s zero deformation will be assumed and in
general, the angular rotation will begin with a positive direction. From Figure 2.1 it is
visible that point A is on the axis of rotation, therefore zero deformation will occur at
that point. In the sticking region, the tread elements will remain in the same position
in the ground-fixed reference frame, but in the caster-fixed (x, y, z) system they will be
revolved with ψ angle around A. And when the deformation reaches qcr, then it will be
limited by the available frictional forces.

From Figure 3.1, it is visible, that the deformation function of this type can be expressed
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Figure 3.1: In-plane brush model representation of the tire elements deformation. Three
distinct zones can be visibly identified, therefore three different equations are needed to
describe the deformation function.

as

q(x) =



3FN µ

4 a3 k
· (a2 − x2) , if x ∈ [−a, xR),

− tanψ · (x− e) , if x ∈ [xR, xL),
−3FN µ

4 a3 k
· (a2 − x2) , if x ∈ [xL, a],

(3.1)

where xR and xL are the points, where the sticking turns into sliding as a result of reaching
the critical deformation limit. The values of these variables can be calculated analytically
by solving simple algebraic equations, which can be found in the Appendix.

Equation (3.1) is only valid for deformations, where only three sections are generated
by the angular motion and the direction of the revolution is positive at the beginning.
For negative directions with three deformation zones, a similar expression can be derived.
For the sticking region, the deformation can be characterized with the same function as
before, but it will reach the deformation limits at different points, therefore

q(x) =



−3FN µ

4 a3 k
· (a2 − x2) , if x ∈ [−a, xR),

− tanψ · (x− e) , if x ∈ [xR, xL),
3FN µ

4 a3 k
· (a2 − x2) , if x ∈ [xL, a]

(3.2)

deformation function can be derived. Thus, in general, when three deformation zones are
expected, the analytical formula for the contact line deformation can be expressed as

q(x) =


sgn (ψ) 3FN µ

4 a3 k
· (a2 − x2) , if x ∈ [−a, xR),

− tanψ · (x− e) , if x ∈ [xR, xL),

−sgn (ψ) 3FN µ

4 a3 k
· (a2 − x2) , if x ∈ [xL, a],

(3.3)

where sgn notes the signum function.

14



With the numerical simulation, that was introduced in section 2.2, it is possible to test,
whether the above described formulas are correct or not. In our analysis, we consider
that both the deformations and the angle ψ are small, hence the sticking part can be
linearized:

q(x) =


sgn (ψ) 3FN µ

4 a3 k
· (a2 − x2) , if x ∈ [−a, xR),

−ψ · (x− e) , if x ∈ [xR, xL),

−sgn (ψ) 3FN µ

4 a3 k
· (a2 − x2) , if x ∈ [xL, a].

(3.4)

The linearization caused small errors compared to the simplifications made during the
model creation, therefore it was decided to calculate with the linearized equations from
now on. In Figure 3.2, it is shown that the previously derived analytical functions are
able to accurately describe the deflection of the contact line if the deformation function
has only three zones.
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Figure 3.2: Analytical deformation functions compared to results obtained by numerical
simulation at a given time-step. On the left, the nonlinear form can be seen. On the right
the results after linearization are visible.

From Figure 2.6, it can be seen, that more than three deflection zones can occur in the
contact line of an elastic tire. For example, when the direction of rotation is changed, the
thread elements, that are in the sliding region can revolve back into the sticking region.
As a result, in the deformation function parabolic sections appear, which are revolved
around point A. An example of a deformation function with such zones can be found in
Figure 3.3.

Let us suppose that three deflection zones are present in the contact patch. At a given
time step, the direction of the rotation is changed from positive to negative direction. At
that given time, the yaw angle is defined as ψmax, thus the deformation function can be
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Figure 3.3: In plane model showing five deformation zones. The limits of each section
are noted in the figure with the appropriate notation, also used in the equations.

expressed as

q(x) =



−3FN µ

4 a3 k
(a2 − x2) , if x ∈ [−a, xR),

3FN µ

4 a3 k
(a2 − x2) +mR x−mR e if x ∈ [xR, x

∗
R),

−ψ (x− e) , if x ∈ [x∗
R, x

∗
L),

−3FN µ

4 a3 k
(a2 − x2) +mL x−mL e if x ∈ [x∗

L, xL),
3FN µ

4 a3 k
(a2 − x2) , if x ∈ [xL, a],

(3.5)

where x∗
R and x∗

L are the point of the contact line, where the linear deformation zone crosses
the rotated parabolic zones. The rotated parabolas can be calculated as the addition of
the parabolic limits of deflection and linear functions that can be parameterized with mL

and mR. The values of x∗
R and x∗

L can be obtained by calculating xR and xL for ψmax

for three deflection zones (equation (3.4)). Then the values of mR, mL, xR and xL can
be obtained by solving simple algebraic equations. The derived analytic formulas can be
found in the Appendix.

Similarly to Figure 3.2, the above described formulas can be compared to the numerical
results. In Figure 3.4 the analytical results are shown next to the numerical deformation
values and it is visible that the analytically derived formulas are able to accurately describe
the deflections that occur in the contact patch.

The same principle can be used, when the angular direction changes from negative to
positive. Three deflection zones turn into five zones, and the deformation function can be
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Figure 3.4: Comparing the analytical deformation function with the results obtained by
numerical simulation.

expressed as

q(x) =



3FN µ

4 a3 k
(a2 − x2) , if x ∈ [−a, xR),

−3FN µ

4 a3 k
(a2 − x2) +mR x−mR e, if x ∈ [xR, x

∗
R),

−ψ (x− e) , if x ∈ [x∗
R, x

∗
L),

3FN µ

4 a3 k
(a2 − x2) +mL x−mL e, if x ∈ [x∗

L, xL),
−3FN µ

4 a3 k
(a2 − x2) , if x ∈ [xL, a],

(3.6)

where mR, mL, xR, xL, x∗
R and x∗

L can be calculated similarly as before. The exact
analytical formulas can be found in the Appendix.

A similar process can be observed if five deformation zones are present in the contact
line and a direction change occurs in the angular motion. As a result, more rotated
parabolic zones are generated in the sticking region, but the effect of those deformation
zones is assumed to be negligible, therefore it was not modeled in this work.

Although previously only those cases were discussed, when more and more zones are
generated in the deformation function of the contact line, in other words, fragmentations
are created with the change of angular direction. The moment when this happens, the
yaw angle was defined to be ψmax. When the yaw angle’s absolute value exceeds ψmax (ψ >
−ψmax), the fragmented zones reach qcr limit of deflection, therefore the fragmentation
disappears. The process of the deformation modeling is summarized with a state machine,
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and it is illustrated in Figure 3.5.

Figure 3.5: State machine representation of the approximation process for the deforma-
tion function. The dotted line represents the neglected seven zone fragmentation, which
is not a true analytical description, but an assumption.

The state machine in Figure 3.5 is suitable for illustrating the deformation function’s
analytical approximation, but the scheme was also applied in the simulation environment
- presented in section 2.2 - and an animation function was programmed to be able to
examine the numerically simulated and the analytically calculated deformations through
the simulation time interval.

3.2 Estimation method for the coefficient of friction

After describing the deformation function q(x, t) in the previous subsection, now all the
terms are known in the equation of motion - equation (2.14). The expressions for the
deformation contain known or observable physical quantities, only the coefficient of fric-
tion remains unknown. The definite integral in the equation of motion can be evaluated
analytically, because the deformation function is known, if the yaw angle is measured and
the history of measurements is stored (the "memory effect" of an elastic tire is considered),
an algebraic equation can be formed for the coefficient of friction, as

f(µ) := −JA ψ̈(t) − bt ψ̇(t) +M(t) −
∫ a

−a
k q(x, t) (x− e) dx = 0, (3.7)

where f(µ) is defined as the algebraic expression (which equals zero), that needs to be
solved in order to acquire the value of the coefficient of friction. This function cannot
be solved analytically, but it is possible to solve it with numerical schemes. The chosen
numerical solver was the built-in fsolve function of Matlab [16], using a trust region
algorithm.
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As previously discussed, with the help of the created simulation environment, it is
possible to test the developed estimation algorithm. The mechanical system was simulated
with the physical properties summarized in Table 3.1, then the coefficient of friction can
be calculated for each time step.

Parameter Notation Value

Towing length l 0.01 m
Contact patch half-length a 0.04 m
Lateral tire stiffness k 60000 N/m2

Mass moment of inertia with respect to joint A JA 0.1 kgm2

Torsional damping bt 0.4827 Nms
Vertical tire load FN 180 N
Coefficient of friction µ 0.5

Table 3.1: List of parameters used in the numerical simulations for testing the developed
estimation algorithm.

In order to test whether the equation for the coefficient of friction (Eqn. (3.7)) is
correct, first the value of µ was provided to the algorithm, but the yaw angle was not,
therefore the output of the numerical solver was the estimation for ψ. The results can
be seen in Figure 3.6. The test was successful, therefore equation (3.7) can be considered
accurate. It is now visible that the estimation algorithm can accurately identify the yaw
angle. However, ψ can be measured easily, on the other hand, the calculation method
used the value of the coefficient of friction, which can not be observed.

0 1 2 3 4 5

Time [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Y
a
w

 a
n
g
le

 [
ra

d
]

Actual

10% error

Estimated

Figure 3.6: Estimating the yaw angle, with the value of the coefficient of friction given
to the algorithm. Except for small oscillations around the peaks of the true yaw angle
function, no visible differences can be seen between the actual and the estimated signals.
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The next step is to check, whether the developed estimation algorithm can identify the
coefficient of friction correctly. In equation (3.7), after expressing the definite integral, the
coefficient of friction appears in nonlinear terms, thus it is harder to solve the equation
numerically for µ. With the same physical properties, the result of the estimation can
be seen in Figure 3.7. The estimation process was also tested for simulation cases with
µ = 1 and µ = 1.8, the figures illustrating the results can be found in the Appendix.
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Figure 3.7: Estimation results for the coefficient of friction using simulated data sets.

In Figure 3.7 big errors are visible in the beginning (approx. until t = 0.5 s), but those
errors can be explained with the small angle differences. In the beginning, only the two
sliding ends of the contact line are dependent on the friction. When small angle differences
occur, the terms that depend on the friction are so small, that it is hard for the numerical
solver to accurately approximate the coefficient of friction. Apart from that, only small
oscillations are visible, which occur when changing the direction of the angular motion.
If five (or more) segmentation can be found in the contact region, the memory effect of
the tires needs to be considered, therefore f(µ) depends on the local minima/maxima of
the yaw angle (previously defined as ψmax). With the time discretization, the true local
minimum or maximum cannot be determined, but only approximated, that is the reason
for those errors.

Another problem occurred, which originates from the numerical precision of the calcu-
lation. In Figure 3.8, f(µ) is illustrated with the sought value of f(µ) = 0. On the left,
a "normal" case is visible, where the numerical solver had no problem with finding the
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appropriate solution. On the right side of the figure, a "problematic" case is visible. The
function never reaches the value of zero, because of the numerical inaccuracies, therefore
the solver approximates the solution with the point of the curve, which is nearest to the
x-axis.
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(a) Solving f(µ) = 0 numerically, "normal"
case.
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(b) Solving f(µ) = 0 numerically, "prob-
lematic" case.

Figure 3.8: Illustrating f(µ) at two different time instances. The dashed line represents
the sought f(µ) = 0 value.

After identifying all the causes of inaccuracies, the same graph as in Figure 3.7 is shown
with the noted errors in Figure 3.9.

Figure 3.9: The results of the estimation showing the causes of inaccuracies.

Although the proposed estimation process has its limitations and some inaccuracies, it
can estimate the coefficient of friction for simulated data sets. The biggest advantage of
the method is that the results and the errors are easy to interpret, because the method is
based on a physical model, and the equations are derived from physics-based expressions.
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4 Estimation of the coefficient of friction using ma-
chine learning

4.1 Estimating with neural networks

4.1.1 A brief introduction to artificial neural networks

Nowadays, machine learning algorithms and artificial neural networks (ANNs, or just
shortly NNs) are well-known terms for the majority of academic society. The idea of cre-
ating computational systems based on neurons in the human brain was first introduced
about 60 years ago, but in the last 35-40 years, the usage of previously mentioned algo-
rithms spread worldwide [17]. The main reason for the growing applications is that the
growing computational power made it possible.

The most important property of ANNs is the capability to learn complicated connections
between patterns from (measured) data. The main application fields are classification or
regression tasks, moreover, predictions of time-series events are even possible. The usage
of neural networks can be divided into two phases. First, during the learning phase,
the final operation of the system is formed, by processing given data structures. During
the second phase, the evolved working of the network can be utilized for the prescribed
purpose [18].

The basic building blocks of neural networks are so-called neurons, which form layers
within the network. The layers can be classified into three main classes, based on their
positions in the network. The first layer is called the input layer, the last is the output
layer, and all the other ones are called hidden layers. A typical representation of this
structure can be seen in Figure 4.1. The duty of the input layer is to forward the incoming
data, this layer does not take part in the processing of information. The output layer
generates an output for each inherent neuron, therefore the number of neurons must match
the output of the given task. The number of neurons in each layer and the connection
between them can be modified almost arbitrarily.

The layers can also be classified based on their function. Layers are usually divided into
categories based on their connection with other layers and how the output of the given
layer is calculated. A few common examples are listed below.

• Dense layer: the output is calculated as the linear combination of the input and a
constant weight vector.

• Recurrent layer: the layer receives some of the previously calculated outputs with
the current input. The memory effect can be modeled this way.

• Convolutional layer: in contrast with the dense layer, the neurons inside a convolu-
tional layer receive only a part of the input.
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Figure 4.1: Representation of the layers in neural networks.

The connection between distinct layers is calculated with the help of weight vectors and
activation functions. Let us consider a NN with L layers, then the output of an arbitrary
kth layer (1 < k < L) can be expressed as

yk = hact,k (Wk · yk−1 + bk) , (4.1)

where hact,k is the activation function of the given layer, Wk is the weight matrix of the
layer, yk−1 is the output of the (k − 1)th layer and bk is the bias vector of the layer.
Assuming that the kth layer has Nk neurons, similarly the (k − 1)th layer consists of Nk−1

neurons, the output vectors yk ∈ RNk ans yk−1 ∈ RNk−1 . Also the weight matrix and the
bias vector Wk ∈ RNk×Nk−1 , bk ∈ RNk . The relation between the inputs and the output of
a single neuron is illustrated in Figure 4.3. Thus, the output of the entire neural network
can be expressed as a nested function

y = yL = hact,L ◦ · · · ◦ hact,2 ◦ hact,1 (x) , (4.2)

where x ∈ RN0 is the input vector of the network [3]. In the learning phase, the aim is to
find the optimal elements of the weight matrices and the bias vectors in order to minimize
the difference between the calculated output of the system and the expected, pre-defined
output. For activation functions, usually nonlinear functions are chosen. Typical examples
are rectified linear (relu, noted with r), sigmoid (in other words logistic, noted with σ),
or hyperbolic tangent (tanh) functions. Mathematically, these functions can be expressed
as,

r(x) = max (0, x) , (4.3)

σ(x) = 1
1 + e−x , (4.4)

tanh(x) = 2
1 + e−2x − 1. (4.5)

The above mentioned activation functions are illustrated in Figure 4.2.

In the field of machine learning, several learning algorithms are used, usually opti-
mization techniques, that minimize the difference between the user-defined output of the
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Figure 4.2: Different activation functions illustrated.

Figure 4.3: A single neuron with three inputs. The inputs, input weights, activation
function, bias and output are all illustrated.

system and the actually calculated output. Neural networks are often used with iterative
optimization algorithms, for example, the gradient descent method. The principle of the
method is a pre-defined cost function, that compares the actual and the predicted output
of the system, for example, the root mean square error of the data sets. The parameters
of the cost function are the so-called hyper-parameters of the neural network. First, the
network initializes the hyper-parameters randomly, then it tunes the parameters itera-
tively to get closer and closer to the global minima of the cost function. The values of the
parameters in the next iteration step are calculated as the difference between the previous
parameter vector and the gradient vector multiplied by the learning rate. The learning
rate is a constant number, which is defined at the start of the learning process.

An iteration step of the optimization algorithm is called an epoch, therefore if the
gradient descent method found the minima of the cost function with 16 iterations, the
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neural network was trained for 16 epochs. But it is not time effective to calculate the
gradient for the whole training set, therefore the gradient is only calculated for a small,
randomly selected set, called the mini-batch or simply batch, at every iteration step [19].

4.1.2 Estimating the coefficient of friction using neural networks

The neural network was programmed in Python, using the built-in functions from the
libraries TensorFlow [20] and Keras [21]. The aim was to create a simple neural network,
that can estimate the coefficient of friction without knowing anything from the physical
system. The activation functions and the neuron count of the given layers were tuned
empirically by checking the results of the estimation for three different activation functions
(seen in Figure 4.2). Therefore the structure of the network is quite plain:

• input dense layer with 1024 neurons, sigmoid activation function,

• one dense hidden layer with 512 neurons and also sigmoid activation function,

• output dense layer of 1 neuron with no activation function (the output is the linear
combination of the weights and inputs added by the bias of the layer).

The inputs of the neural network at a given time step were the yaw angle ψ, the previous
local minima or maxima of the yaw angle signal ψmax and the actual steering torque M .
The output of the system is the estimated coefficient of friction. The training data set is
illustrated in Figure 4.4.

Figure 4.4: Training inputs of the neural network. The violin plot shows the distribution
of the data, while the black dots represent the actual data points, therefore it is visible
that the yaw angle and the steering torque are continuous functions, while ψmax and µ

are discrete values.
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Before setting up the environment for the machine learning part, three different simula-
tions were made using the simulation process introduced in Section 2.2. The simulations
were made with three different coefficients of friction, with µ = 0.5, µ = 1 and µ = 1.8.
The other physical properties remained the same as in Table 3.1. The data sets with
the smallest and largest coefficient of friction were used for training the network, and the
simulation case with the middle value was used for testing the trained neural network.

The training data set was imported in a shared data frame, and the rows were shuffled
in order to prevent over-fitting. The batch size was selected to be 32, because several
studies imply that small batch sizes result in better results with less training time [22].
The network was trained for 30 epochs, using the Adam optimizer from the Keras library
with a learning rate of 0.001. These options were selected because the optimizer usually
found the best fitting parameters by the fifteenth epoch (as it is visible in Figure 4.5),
but then fifteen more epochs were trained to ensure that the optimizer could not find
any best solution. The stochastic nature of the Adam optimizer and the mini-batch
method was the motivation for setting the training process two times as long as necessary,
therefore guaranteeing that not a local, but the global optimum has been found. During
the training, 10% of the data was used for validation to determine the error of the network
after each iteration. The error was monitored with the root-mean-squared error (RMSE)
metric. A so-called call-back was also defined to restore the weights after the iteration
process ended, to match the best validation error achieved during training. The errors
of a typical training process can be seen in Figure 4.5. The training error corresponds
to the error of the neural network on the data set, that was used for training, while the
validation error was calculated for the validation split, which did not take part in training
the model.
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Figure 4.5: Error of the models during a typical training process.

As previously mentioned the sigmoid activation function was chosen with the given
neuron counts to provide the most accurate estimation of the friction coefficient. To
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determine these three parameters (number of neurons in the first and second layer and
the activation function), the model was trained with a lot of different settings to find
which one provides the best approximation. The two layers were both tested with 2, 4, 8,
16, 32, 64, 128, 256, 512 and 1024 neurons with all available variations of layer two and
layer one neuron counts. Three activation functions were used: relu, sigmoid and tanh, as
in Figure 4.2. The trained models were all tested on the same data set and were ranked
based on the RMSE values of the approximations. The best model architecture for each
activation function is listed as:

• Sigmoid activation function, first layer with 1024 neurons, second layer with 512
neurons. The RMSE value was 0.015.

• Relu activation function, first layer with 256 neurons, second layer with 512 neurons.
The RMSE value was 0.0716.

• Tanh activation function, first layer with 1024 neurons, second layer with 64 neurons.
The RMSE value was 0.0866.

To see the effect of the neuron count on the whole estimation process, the RMSE values
for all the layer count variations can be illustrated as a three-dimensional surface for a
given activation function. In Figure 4.6, the RMSE values for the best fitting activation
function, namely for the sigmoid function, are visible. For better visibility, the layer
counts are illustrated on a logarithmic scale. Apart from three-dimensional surfaces, two-
dimensional contour plots can also represent the examined phenomena. In Figure 4.7, the
contour plots of RMSE values for the other two activation functions (relu and tanh) can
be seen.

Figure 4.6: RMSE values for all the neuron count variations in case of the sigmoid
activation function. The first layer’s neuron count is denoted by n1, the second layer’s by
n2.
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Figure 4.7: Illustrating the RMSE values for all the possible neuron count variation.
In (a) the RMSE values for the relu activation function, in (b) the RMSE values for the
tanh activation function are visible.

After training the neural network, the accuracy of the estimation was tested on the
simulated data set with µ = 1. The error of the estimation was 0.1068 using the RMSE
metric, which is around 10% relative error. The results of the estimation can be seen in
Figure 4.8.
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Figure 4.8: Results of the estimation with the simple neural network model.

A comparison can be made with the derived analytical estimation method on the left
side of Figure 4.9. It is visible that the analytical approach (apart from the errors in the
beginning) is more accurate than the neural network. But it is important to mention that
the test case was simulated with a steering torque characteristic similar to the simulation
cases that were used for training the model. On the left-hand side of Figure 4.9, the
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estimation methods were compared using a different steering torque input. At the end
of the simulated time interval, huge errors are visible for the analytical method, because
there are more than five fragmentation zones in the deformation function, for which the
method was not derived. Also, the neural network estimation is not sensitive to small yaw
angles, therefore it provides a more accurate solution at the beginning of the simulation
time. Consequently, the proposed analytical estimation method is more accurate, but the
neural network is more robust.
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Figure 4.9: Comparing the results of the estimation with neural network with the results
from analytical method. On the left, the input steering torque characteristic is similar to
the steering torque in the training data. On the right different steering torque input was
applied, therefore more fragmentation zones formed in the deformation function, thus the
analytical approach was not accurate in the end.

4.2 Estimation process implementing a Scientific Machine Learn-
ing (SciML) model

While traditional machine learning (ML) algorithms are shown to be able to model non-
linear dynamical systems, there are some essential problems that are still not solved.
Most importantly machine learning structures need large sets of training data for accu-
rate operation. Although in some cases it is possible to acquire such big data sets via
measurements, usually it is not the case. The next problem is that ML models cannot
extrapolate out of the training data set well, and lastly the results are hard to interpret.
For example, after training a neural network, the weight and bias values can be obtained,
but there is no clear expression that can describe the investigated physical system.

In contrast to traditional ML models, scientific machine learning (SciML [23]) is a quite
unique and new field of machine learning research. The basic principle of the method is
to incorporate the knowledge about the investigated physical system, but the effects of
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the unmodeled terms are compensated with a machine learning structure (e.g. neural
networks).

4.2.1 Universal differential equations within scientific machine learning

Within SciML, the use of universal differential equations (UDEs) is a newly applied
approach [24]. UDEs are standard differential equations supplemented with machine-
learnable parts. A non-general form of universal differential equations can be expressed
as

ẋ = f (x,p) + U (x,p,q) , (4.6)

where x is the unknown vector, f describes the system with the physics-based modeling
method, p vector contains the physical parameters of the mechanical system (assumed
to be constant) and U is the machine learnable part with q parameters of the machine
learning structure (e.g. the hyperparameters of a neural network). Also in equation (4.6)
the noise terms are neglected and the state variable x is assumed to be observable.

A typical workflow of applying a SciML method with UDEs is to first derive the an-
alytical differential equations that describe the system, then gather measurement data.
After fitting the physical properties (noted with p in equation (4.6)) in a way to match
the physics-based approximation with the measurement data the best way. Then finally,
the only unknowns are the machine learning model parameters, which can be obtained
by training the model, for example, a neural network with gradient descent.

For the model presented in Section 2.2, the following UDE system can be derived, but
first, define the unknown vector as

x =
q(x, t)
ψ̇(t)

 . (4.7)

Then from equation (2.12), (2.13) and (2.3) the universal differential equation can be
derived, neglecting the nonlinear term:
q̇(x, t)
ψ̈(t)

 =
 (e− x) · ψ̇(t)
− (bt/JA) · ψ̇(t) − (1/JA) ·

∫ a
−a k q(x, t) (x− e) dx+ (1/JA) ·M(t)

+

+ U (x,p,q) , (4.8)

where p vector contains e, bt, JA, a and k.

Using the UDE structure in (4.8), with appropriate measurement data, the machine
learning algorithm parameters could be calculated, but there is a problem originating from
the assumption, that the state variable of the system is observable, which is not the case.
Experiments showed, that it is possible to examine the contact line parameters during
static load [25], but this method could not be applied with angular motion, therefore a
modification for the UDE SciML method had to be made.
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4.2.2 Using scientific machine learning to estimate the coefficient of friction

As previously mentioned, the SciML method works well with universal differential equa-
tions, but due to the nature of the investigated mechanical system, the UDE approach
cannot be applied. Thus, a new method was developed, similar to the UDEs, but for non-
linear algebraic equations, that express a physical meaning. Using the derived analytical
approach in Section 3, a universal nonlinear algebraic equation can be defined as

µ = n(p) + U(p,q), (4.9)

where n is the numerical solution of f(µ) = 0, p vector contains all the physical parameters
that need to be provided in order to solve the nonlinear equation f(µ) = 0 and q is the
parameter vector of the machine learning system.

Solving the physics-based part happens the same way, as discussed in Section 3. The
neural network-based part of the solution was determined with a similar machine learning
model as in Section 4.1.2, the only difference is that the network gets all of the physical
parameters of the system as an input (namely ψ, ψmax, M , e, FN, the direction of rotation,
the number of fragmented zones, a, k and of course the analytically estimated µ), therefore
a more robust architecture was found to be more efficient. The best activation function
and neuron count were determined with an empirical study, similar to the simple neural
network. Interestingly, in this case, the tanh function proved to be a better choice. The
structure can be summarized as

• input dense layer with 2048 neurons and tanh activation function,

• one hidden layer with 1024 neurons and also tanh activation function,

• output dense layer (1 neuron), with no activation function.

The model is trained with simulation data sets of µ = 0.5 and µ = 1.8, while the test
case is the µ = 1 simulation. Similarly to the neural network validation, another test case
was defined, for a steering torque characteristic, where more than five fragments appear
in the deformation function in order to test, how will the model react to a case, where
the analytic approach is not derived. The results are shown in Figure 4.10.

Consequently, as Figure 4.10 also shows, the proposed SciML method’s accuracy is com-
patible with the analytic estimation, moreover the numerical errors and the unmodeled
effects can be also compensated, thus this technique can be utilized to provide a robust
and accurate estimation of the coefficient of friction.

4.3 Sensitivity analysis of the three methods

The previously proposed methods can be compared based on a lot of aspects, one of
them being how much difference can they tolerate in the input signals in order to still
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Figure 4.10: The results of the coefficient of friction estimation with the proposed SciML
method. The method is tested on a steering torque characteristic, for which the analytic
estimation was derived (left), and another steering torque input for which the analytic
method is not accurate (right). The results of the analytic estimation method are also
shown.

provide an accurate estimation. For example, if the yaw-angle signal is heavily influenced
by measurement noise can they still approximate the coefficient of friction with relatively
high accuracy? For testing this, from one of the simulation cases with µ = 1, a time
interval was chosen right after a direction change with ψmax = 0.7126 rad. The yaw angle
and steering torque during this time period are illustrated in Figure 4.11.

The minimum steering torque is -1.5669 Nm, and the maximum is 1.5129 Nm. For the
yaw angle, these values are respectively -0.7521 rad and 0.7126 rad. A mesh has been
defined as the steering torque is scaled from -1.5 Nm to 1.5 Nm and the yaw angle is from
-0.75 rad to 0.75 rad both with a hundred elements. Along this numerical surface defined
by the two physical properties, the estimation methods have been evaluated for each mesh
point (all the other physical parameters have been kept constant). Of course, the majority
of this surface is physically not achievable, but for curiosity, the methods have been tested
for all the mesh points. The resulting coefficient of friction can be illustrated as the third
coordinate to form a three-dimensional surface. For the analytical approach, this surface
is illustrated in Figure 4.12. The coefficient of friction values that are fallen into the
maximal of 10% error zone are illustrated with green color. The yaw angle and steering
torque pairs that are a result of the simulation (shown in Figure 4.11) are illustrated with
a red line. From Figure 4.12 it is visible, that the analytic estimation provided accurate
results for the physically achieved values, and can even handle small inaccuracies of the
input values.

A similar surface could be presented for the neural network-based estimation, but the
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Figure 4.11: Yaw angle and steering torque signals for the investigated duration in the
sensitivity analysis.

evaluation of this method resulted in a more "flat" surface, with nearly all of the values
on the boundary of the 10% error range, therefore this plot is not shown here, but it is
interesting to notice that the neural network based estimation provided quite accurate re-
sults even for the physically unachievable parts of the mesh. This problem was mentioned
earlier, that neural networks are capable of universally approximating all sorts of physical
phenomena, but the internal working of the network cannot be interpreted on a physical
level. Thus, the SciML method was mentioned earlier as a possible solution, and it is
visible in Figure 4.13, that physically unachievable parts have an impact on the SciML
estimation method, but the possible inaccuracies of the input parameters (in this case only
the yaw angle and the steering torque) have influenced the estimation less, compared to
the analytic case. Apart from the known limitations of the machine learning-based meth-
ods, the main consequence of this sensitivity analysis is that not enough training data was
provided for the neural networks. In Section 5, an experiment will be performed in order
to validate the proposed methods on measurement data. The lesson has been learned
from the simulation cases, therefore significantly more training data will be provided for
the neural networks in order to achieve the maximum accuracy.
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Figure 4.12: Results of the sensitivity analysis for the analytic estimation method. The
green surfaces show the values that belong in the 10% error region. The red line shows
the physically achieved part during the simulation.

Figure 4.13: Results of the sensitivity analysis for the SciML-based estimation.
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5 Measurement

To validate the previously proposed estimation methods, it is not enough to test with
simulated data, therefore a measurement setup needs to be developed. Fortunately, ex-
periments have been carried out for a long time at the Department of Applied Mechanics
to investigate the dynamical properties of towed wheels [26]. Thus, an already estab-
lished experimental set-up was used with some modifications, which will be detailed in
this section.

5.1 Measurement set-up

At the Department of Applied Mechanics, an experimental rig has been developed, that
was used during this work. The experimental setup can be seen in Figure 5.1. The
investigated bicycle wheel is mounted in a way that allows the modification of the towing
length e. The caster can be rotated about the rigid kingpin, where oil lubrication ensures
that the effect of dry friction can be neglected, and low torsional damping is expected.
The length of the contact patch can be modified by changing the vertical distance between
the kingpin and the "road" surface.

Figure 5.1: Experimental rig with the used devices.

The experimental setup allows measurements with non-zero towing speed, but the pre-
viously derived estimation methods were developed for tires standing still. The steering
torque needs to be measured in order to estimate the coefficient of friction, but using this
set-up the direct measurement was not possible, because the steering torque was actuated
by hand, therefore a Kistler 9129AA Multicomponent Dynamometer was used to measure
the self-aligning torque. With zero towing speed, the conveyor belt was not moving, thus
it was possible to place the force sensor below the tire. To do so, a special experimental
frame was designed and manufactured from metal sheets, to mount the Kistler sensor
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onto the conveyor belt. For the force sensor, a Kistler Type 5080A charge amplifier was
also used. The yaw angle ψ(t) was measured with a magnetic rotation sensor placed at
the joint (AMS AS5048A magnetic rotary encoder, 14-bit resolution). For detecting and
digitizing the measured angle signals, a PIC microcontroller was used (part of the experi-
mental rig). The measurement data was gathered using a National Instruments USB-6216
(BNC) data acquisition device, but the measured signals were processed in MATLAB.

For testing the estimation methods, different surfaces need to be used during the mea-
surements. The designed frame made it possible to attach an extra plate to which different
surfaces could be cemented. Three different plates were selected with different frictional
characteristics. One plate was plain steel, the other two plates had emery papers glued
on, with different surface roughness.

5.2 Identification measurements

For the analytical estimation model, some physical properties have to be provided. The
towing length can be measured on the experimental rig, for all measurements e = 0.009 m
was preset. The vertical load force was measured by the Kistler 9129AA device, while the
length of the contact patch was measured with a vernier caliper. The yaw angle and the
self-aligning torque was gathered as previously mentioned.

The only remaining input of the model is the lateral stiffness k, which can be only
determined via identification measurements. In practical applications, it would be hard
to identify k, but the value of the lateral stiffness is constant for constant internal tire
pressure, therefore by measuring the tire pressure, k could be estimated. But in this ex-
periment, the lateral stiffness value is identified from the natural frequency of the system,
which can be determined experimentally.

For the neural network-based estimation methods, while training the models, an accu-
rate coefficient of friction value needs to be provided. Moreover, it is necessary to know
the exact value of µ for validation purposes, thus the coefficient of friction also needs to
be identified.

5.2.1 Identifying the coefficient of friction for different measurement plates

As mentioned before three different plates were used during the experiments, with three
different coefficients of friction. A simple experiment was applied in order to estimate
the values of the coefficients of friction. A wooden object with rubber material glued
onto the surfaces was towed on the measured plates, while measuring the forces with the
Kistler Multicomponent Dynamometer. The rubber material was chosen to be similar to
the elastic rubber of the measured tire. The experiment setup can be seen in Figure 5.2.

The experiments were carried out with different normal forces for each plate to estimate
the coefficient of friction. As mentioned in section 2, the static and dynamic friction
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Figure 5.2: Experiment set-up for measuring the coefficients of friction

properties are assumed to be the same, therefore as all three force components were
measured (Fx, Fy and Fz), the measured data is fitted to the function expressed as

F = µN, (5.1)

where F =
√
Fx

2 + Fy
2 and N = Fz.

The measurement has been carried out for all three plates with different normal loads.
The results for one plate (black emery paper) can be seen in Figure 5.3. The fitted curve
can be considered accurate, therefore the values of each coefficient of friction (summarized
in Table 5.1) are appropriate for validating the estimation methods.
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Figure 5.3: Results of the coefficient of friction identification measurement for one of
the emery papers.
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Plate Coefficient of friction [1]
Metal plate 1.674
Emery paper (red) 1.9003
Emery paper (black) 0.6757

Table 5.1: Identified coefficients of friction.

5.2.2 Identifying the lateral stiffness of the tire

To identify the distributed lateral stiffness of the tire, the system is modeled as one
degree-of-freedom damped oscillator, then the relative damping ratio ζ and the damped
natural angular frequency ωd was calculated from the measurement data. During the
identification measurements, the caster was perturbed by an impact, and it was repeated
five times for each different contact patch length. The measurement signals for one of the
contact patch lengths can be seen in Figure 5.4.
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Figure 5.4: Five measurement signals for one of the contact patch lengths. All of
the mechanical parameters are the same, only the initial excitation is different, thus the
damping and the damped natural frequency are visibly identical.

The natural frequency of the damped system was determined by using the built-in Fast
Fourier Transformation (FFT) function in MATLAB, and the natural angular frequency
ωd can be calculated as

ωd = 2πfd, (5.2)

where fd is the natural frequency of the damped system. The relative damping ratio was
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calculated with the method of logarithmic decrements as [27]

Λ = 1
n

ln
(
A1

An+1

)
, (5.3)

ζ = Λ√
4π2 + Λ2

, (5.4)

where Λ is the logarithmic decrement, An notes the nth maximal deflection for a given
direction and ζ is the relative damping ratio. Then the natural angular frequency of the
undamped system ωn can be determined with the following expression:

ωn = ωd√
1 − ζ2 . (5.5)

Thus, the natural angular frequency of the undamped system and the relative damping
ratio is known, now the lateral stiffness value needs to be calculated. From [28], the
equation of motion with v towing speed, taking into account the delayed effect of the
self-aligning torque can be expressed as

JA ψ̈(t) + bt ψ̇(t) + 2ak
(
e2 + a2

3

)
ψ(t) = (e− a) vk

∫ 2a
v

0
(e− a+ vτ) ψ(t− τ) dτ , (5.6)

with the previously used notations and τ is the time delay. Thus the natural angular
frequency of the undamped system can be expressed as

ωn =

√√√√√√2ak
(
e2 + a2

3

)
JA

. (5.7)

As well as the relative damping ratio:

ζ = bt

2ωn
. (5.8)

The experiment was repeated with seven different contact patch lengths, while keeping
the towing length e the same. The value of k and bt was calculated to fit the theoretical
curves of (5.7) and (5.8) to the measurement results with the least error possible. The
results of the experiment and the curve fitting can be seen in Figure 5.5.

While the undamped natural frequency can be identified quite accurately with the FFT
algorithm, measuring the damping is much harder, therefore the deviation of the damping
data set is larger compared to the natural angular frequency. In Figure 5.5, some outlier
values are visible in the measured relative damping. Although by deleting those outlier
values, probably a more accurate torsional damping value could be calculated, but the
aim of this experiment was the identification of k, therefore the results were accepted and
the identified values are summarized in Table 5.2.

All the remaining measurements were carried out with the same inner tire pressure of
p = 1 bar, therefore the identified distributed lateral stiffness value is valid for all the
latter experiments.

39



0.03 0.035 0.04 0.045 0.05 0.055

Contact patch half-length [m]

20

30

40

50

N
a

tu
ra

l 
a

n
g

u
la

r

fr
e

q
u

e
n

c
y
 [

ra
d

/s
]

meas.

avg.

fitted

0.03 0.035 0.04 0.045 0.05 0.055

Contact patch half-length [m]

0.05

0.1

0.15

0.2

0.25

R
e

la
ti
v
e

 d
a

m
p

in
g

 [
1

]

meas.

avg.

fitted

Figure 5.5: Identification results for the lateral stiffness and the torsional damping. The
red crosses represent the measured data points, while the black circles are the average
value for each contact patch half-length. The black line shows the fitted theoretical curve.

Physical property Notation Identified value
Distributed lateral stiffness k 2.438 · 106 N/m2

Torsional damping bt 6.8509 Nms

Table 5.2: Identified lateral stiffness and torsional damping.

5.3 Evaluating the proposed calculation methods using the mea-
sured data sets

After the identification experiments, the validation measurements were carried out in order
to test the proposed estimation methods. While the derived analytic calculation method
can be applied for every measurement case, the machine learning-based techniques need
training data as well, therefore the surfaces with the smallest and the largest coefficient
of friction (the black and red emery papers) are used for training the models, then the
results are validated on the third measurement case.

The measurements were carried out as discussed in section 5.1, then the post-processing
was performed in MATLAB. First, the angle, force, and torque offsets were determined
and the signals were corrected with it. The measurement was executed with 4000 Hz
sampling frequency, but the evaluation of each data point would take too much time,
therefore the signals were under-sampled to match the simulation frequency. Also, the
angle signal needed to be filtered with a moving average filter, to provide smooth angle
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signals to the estimation methods.

The analytic estimation algorithm expects the previous local minima or maxima of the
yaw angle (noted with ψmax) as well as the number of fragmentation and the direction of
angular motion at every time-step, therefore these values were calculated during the post-
processing of the data. In Figure 5.6, the yaw angle signal of an arbitrary measurement
case is visible with the determined ψmax. In the first zone, the value of ψmax is defined as
zero, because there is no local extremum before the first direction change.
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Figure 5.6: The yaw angle signal and the determined ψmax values of an arbitrary exper-
iment case.

The direction of motion could be easily determined, but for the fragmentation number,
the previously proposed state machine (Figure 3.5) was used. The results are visible in
Figure 5.7.

5.3.1 Estimation based on the analytic modeling approach

All of the necessary physical or nonphysical input properties have been determined for
the analytic coefficient of friction estimation by measurements or during post-processing
the measured data. Thus, the results of the estimations can be compared to the identified
coefficients of friction.

The results of the estimation for both emery papers are reassuring, but the estimation
for the metal sheet’s coefficient of friction was quite inaccurate. The numerical problems
causing big oscillations are similar to the ones in the simulation phase, but the errors
caused by small angles and the sudden jumps in case of direction change disappeared. Al-
though the previously identified coefficient of friction values (Table 5.1) seemed accurate,
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Figure 5.7: The fragmentation number and the direction of angular motion for an
arbitrary measurement case. On the legend, the number represents the fragmentation
count and the "P" stands for positive, and "N" is for negative direction.

there probably is some inaccuracy in the measurement, because the estimated friction
coefficient values often tend to the same number, but not to the identified value. An
example is shown in Figure 5.8 for one of the estimation cases. All of the other estimation
results can be found in the Appendix.

In Figure 5.8 huge oscillations are visible in the estimated friction coefficient signal.
A possible solution to this problem is the filtering of the signal, for example with an
exponential smoothing filter. The exponential filtering method was chosen, because it is
suitable for a possible real-time application, due to the fact, that at a given time step
only the current and the directly previous signal values are needed for the calculations.
The filtering can be characterised with α constant, as

µ[k] = α · µ[k − 1] + (1 − α) · µ̃[k], (5.9)

where µ[k] is the smoothed estimation at the k-th time step, and µ̃[k] is the raw estimation
at the same time step. Generally α is chosen to be between 0.8 and 0.99 [29], but in this
case, only quite small values (α ≈ 0.01) provided noticeable improvement in the accuracy
of the estimation. An example is illustrated in Figure 5.9, with α = 0.01. It can be seen,
that although the oscillations are reduced, significant time-shift is realised, caused by
the filtering. With zero longitudinal velocity, thus "standing still", the friction properties
are not changing abruptly, therefore the time-shift is not a deal breaker. The main
disadvantage of the filtering is that the transient process at the beginning of the motion
is extended, therefore more time is needed for an accurate approximation.

42



0 5 10 15 20 25 30

Time [s]

0

0.5

1

1.5

2

C
o
e
ff
ic

ie
n
t 
o
f 
fr

ic
ti
o
n
 [
1
]

Measured

Estimated

State change

Figure 5.8: Results of the estimation for one of the measurement cases. The vertical
dashed lines represent the change of state, according to the state machine derived previ-
ously.

In Figure 5.8, apart from oscillations caused by the numerical error, the value of the
estimation tends to be around µ = 0.95 . . . , but the identified coefficient value is 0.6757.
To compare the accuracy of the estimation, the RMSE value was calculated for each
estimation. Also, the time spent on calculating the estimated values was also monitored
with a dimensionless value as

ϑ = tcalculation

tmeasurement
, (5.10)

where tcalculation is the time cost of the estimation and tcalculation is the duration of the
measurement. The duration of each calculation was measured on the same computer, with
an Intel(R) Core i5-8250U processor, 16 GB of RAM, and an NVIDIA GeForce MX150
GPU. The accuracy and the time cost of the estimation are illustrated in box charts in
Figure 5.10, where the horizontal blue lines inside each box represent the median of the
data set, the upper and lower ends of each box show the upper and lower quartiles and
the horizontal black lines outside of the boxes correspond to the maximum and minimum
of the data set.
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Figure 5.9: The results of the exponential filtering applied to the estimation shown in
Figure 5.8

5.3.2 Estimation with machine learning based methods

The machine learning-based estimations were carried out with the same process. The
training data set consisted of the measurements of the black and red emery paper, while
the results were tested on the metal sheet measurements. Although the SciML method
also considered the solution of the analytic estimation as well as other physical properties,
the principle of the method is similar to the neural network estimation. After data post-
processing and training the model, the estimation was made for the validation data sets.
The training losses can be seen in Figure 5.11 for the training of the neural network
model (the training of the SciML model produced similar loss values, but the convergence
was faster). In Figure 5.11, it is also visible, that the results converged after around 5
epochs, but the training lasted for 30 epochs. As mentioned before, a call-back has been
also implemented to restore the weights to match the best validation accuracy during
training, to prevent over-fitting.

The results for a chosen measurement case can be seen in Figure 5.12. The analytic
estimation is also shown, to be able to compare the results of all three methods. All the
other validation results can be found in the Appendix.

It is visible from Figure 5.12, that the analytic estimation results could be the most
accurate of the three methods, but the huge oscillations caused by the numerical calcu-
lation make the estimated signal noisy. Although the SciML estimation is not inside the
interval of 10% relative error, the estimation is much smoother and the accuracy can be
considered accurate (taking into account that in the literature there have been no better
estimation methods found). And lastly, the neural network estimation provides a smooth,
steady signal, however, the SciML implementation improved the results by a significant
amount. The averaged RMSE error of the methods for all validation measurements is
summarized in Figure 5.13, as well as the computational cost of each method.
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Figure 5.10: Box chart illustration of the estimation error and the time cost with the
defined dimensionless time cost quantity.

Figure 5.11: Error of the neural network model during training on the measurement
data.

Although the error of the analytic estimation can be reduced to nearly half of their value
using a SciML method, it is worth mentioning that the simple neural network approach
provides moderately accurate estimation with much less computational time, therefore
could be ideal for practical applications with real-time data processing. á
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Figure 5.12: Results of the estimation methods for one of the validation measurements.
The identified coefficient of friction value with the 10% relative error limits are also shown.

6 Summary

The goal of this thesis was to develop a method that is able to estimate the coefficient of
friction between the road surface and elastic tire. In this work, the longitudinal dynamics
of the vehicle were neglected, the focus of the thesis was to investigate the situation, when
the towing speed is zero, thus only the angular motion is considered. A numerical simu-
lation was successfully created that implements the equations provided by the brush tire
model, in order to investigate the relationship between the road and tire surfaces. Then an
analytic estimation method was developed for estimating the coefficient of friction based
on the brush model. Besides analytic approaches, two machine learning-based algorithms
were used to estimate the coefficient of friction. A simple neural network model, as well
as a SciML method, that combines data-driven modeling with the physics-based part. All
three methods were tested on simulation data, as well as measurement data, gathered by
experiments organized by us. An experimental setup was created using already existent
measurement equipment as well as custom-designed and manufactured gear. The mea-
surement data was post-processed and transformed into such a form, that the estimation
methods could be evaluated using the gathered data. Finally, the conclusions are drawn
and some further improvements can be conceived.
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Figure 5.13: Comparing the accuracy of the estimations for the validation measurement
cases, as well as the time cost of the computations.

6.1 Results

All three estimation methods were able to estimate the coefficient of friction reliably,
using simulation data set. Although the analytic technique showed big oscillations around
the desired value, from time to time, the effect of those numerical errors was negligible.
The accuracy of the SciML implementation was as good as the accuracy of the analytic
algorithm, but more robust, in terms of operational conditions. The analytic method
was only derived for less than five fragmented zones in the deformation function of the
contact patch, therefore gave false results when more zones were formed. In spite of this,
the accuracy of the SciML method was not declined by that much during these conditions.
The classical neural network method was not as accurate as the SciML implementation,
but provided reasonable estimation with far less computational time.

On measured data, the numerical errors of the analytic calculation method caused
much larger oscillations than previously on simulation data, therefore the accuracy of the
method declined. The run time of the calculation was reasonable, but would require more
modifications to the program for a possible real-time application. The neural network-
based estimation proved to be moderately accurate on measurement data, but far less time
was needed for the calculations compared to the previously discussed analytic method.
And finally, the SciML implementation was the most accurate, but the time cost of the
estimation was the largest for this algorithm. The error values, time cost, and robustness
properties are summarized in Table 6.1.

RMSE error [1] Time cost (dimensionless) [1] Robustness
Analytic method 0.638 0.525 for the derived cases
Neural network 0.4794 0.0085 ✓

SciML method 0.3837 0.538 ∼

Table 6.1: Summarized results of each estimation method.
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6.2 Outlook, further development

The developed simulation environment modeled the relation of tire and road surface by the
brush tire model, which is an accurate model during certain conditions. The performance
of the model could be enhanced e.g. by considering different frictional properties in the
sticking and sliding region [15]. Another improvement in the simulation accuracy would
be to consider a more complex tire model, for example, the stretched string model [14],
or a modern tire model [30].

To improve the results of the analytic estimation, some modifications would need to be
made in the model. The linearization of the contact patch deformation function around
ψ = 0 rad made the comparison of the simulation and the analytic calculation more
convenient, but the estimation results could be improved by taking into account the
nonlinear form of deflections.

The accuracy of the neural network models was optimized by tuning the model pa-
rameters of the networks, but the chosen architecture was not modified after a given
complexity. The performance of these machine learning models could be even more im-
proved by implementing complex network structures, but the aim of this study was to
demonstrate the potential application of neural networks with relatively plain structures.
Although the models worked quite well for simulation data, the nominal accuracy was not
reached for validation measurements. The literature suggests the use of other machine
learning structures (e.g. Gaussian processes [31]) for measurement data sets, because
the neural network-based models may not be able to provide accurate solutions for noisy
measurement data [3].

Studies have shown that vehicle path prediction [32], vehicle motion control [33] and
antilock braking system (ABS) control [34] are more efficient if the estimated coefficient
of friction signal is available. Moreover, the end goal of this work was to provide a method
for estimating the coefficient of friction, in order to use the knowledge about the frictional
characteristics for robust steering control. For precise steering control, the understanding
of self-aligning torque (dependent on friction) is essential, thus the proposed estimation
methods provide a solid foundation for the above mentioned applications.
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Összefoglaló

A szakdolgozat kitűzött célja egy becslő eljárás kifejlesztése volt, mely képes megbecsülni a
talaj és egy gumikerék közötti súrlódási együtthatót. A jármű longitudinális dinamikáját
elhanyagolva, a gumikerék és a talaj kontakttartományában csupán az oldalirányú elmoz-
dulásokra koncentrálva felállítottam egy numerikus szimulációt, amely segítségével zérus
vontatási sebesség mellett is vizsgálható az adott probléma. A szimulációhoz a szakiro-
dalomból vett, úgynevezett kefe gumimodellt használtam, amely egy analitikus modell a
kerékben ébredő önbeálló nyomatékának leírására. A szimulációs vizsgálódás után felállí-
tottam egy (szintén a kefe modellen alapuló) analitikus eljárást, amely képes megbecsülni
a súrlódási tényezőt. Az analitikus modellek használatán kívül vizsgáltam gépi tanuláson
alapuló módszerek alkalmazhatóságát is. Egy egyszerű neurális hálózatot is felállítottam
a súrlódási együttható becslésére, mindemelett egy kifejezetten új kutatási terület, a tu-
dományos gép tanulás (az angol "scientific machine learning" kifejezésből röviden: SciML)
eredményeit felhasználva egy hibrid modellt is felállítottam. Ez a SciML modell effektíven
ötvözi az adat alapú modellezést a fizikai úton történő modellezéssel.

Mindhárom eljárást teszteltem szimulált adatsorokon, és arra a következtetésre ju-
tottam, hogy szimulált környezetben mindhárom metódus megbízható és pontos ered-
ményeket ad. Az analitikus becslésben időnként oszcillációk mutatkoztak, amely nu-
merikus hibákból ered, ám ez a hatás elhanyagolható. A SciML módszer hasonlóan
az analitikus módszerhez, pontos becslést szolgáltatott, de robusztusabb megoldásnak
bizonyult. Az analitikus megoldás csak olyan esetekre lett levezetve, ahol a kontakttar-
tományban a gumikerék deformációs függvénye legfeljebb öt zónából áll, ennél több defor-
mációs zóna esetén természetesen pontatlan megoldást szolgáltatott, míg a SciML módsz-
ert kevésbé befolyásolta ez a körülmény. A neurális hálón alapuló becslés kevésbé pontos,
de még elfogadható eredményekhez vezetett, viszont lényegesen kevesebb számítási időre
volt szüksége.

Szimulált adatokon kívül mérésekkel is teszteltem a módszerek hatásosságát, ehhez
előbb egy mérési eljárás felállítására volt szükség. A Műszaki Mechanikai Tanszéken fellel-
hető kísérleti felszerelés, valamint egy újonnan gyártatott lefogatási keret felhasználásával
méréseket végeztem, hogy vizsgálhassam a gumikerék és talaj közötti kapcsolat súrlódási
viszonyainak változását. A mérések által gyűjtött adatokat feldolgozva olyan formára
hoztam, hogy bemenő paraméterként felhasználhatóak legyenek mindhárom becslési al-
goritmus számára.

Mért adatokon tesztelve az analitikus becslés kiértékelésében fellépő numerikus hibák
okozta oszcillációk nagyobbá váltak, így a módszer pontossága is csökkent. A szükséges
számítási idő elfogadhatónak bizonyult, viszont valós idejű felhasználáshoz még fejleszteni
kéne az eljárás gyorsaságán. Kizárólag neurális hálózaton alapuló eljárás esetében közepe-
sen pontos eredményeket kaptam, viszont ki kell emelni a számítási idejét, amely eltör-
pült a többi eljáráshoz képest. Végezetül a SciML módszer bizonyult a legpontosabb-
nak, viszont nem meglepő módon ennek a becslési eljárásnak van a legnagyobb számítási
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igénye. Így összességében kijelenthető, hogy a szakdolgozat elején kitűzött célok teljesül-
tek, mindhárom kifejlesztett becslési eljárás alkalmas a súrlódási tényező azonosítására
kisebb-nagyobb hibákkal. A három eljárást különböző szempontok mentén összehasonlí-
tottam, megállapítottam az egyes metódushoz tartozó előnyöket és hátrányokat, így egy
összefoglaló képet kaphattam az elvégzett munka eredményeiről.
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Appendix

The created scripts

All the scripts that are created for the estimation methods can be found here:
https://github.com/gyorokbendeguz/BSc-Thesis .

The Matlab scripts related to the simulation environment and the analytic estimation
can be found in the BrushSim directory, the Jupyter notebook files related to the machine
learning-based techniques can be found in the MachineLearning directory.

Deformation function parameters for three fragmentation zones

The points, where the sticking region turns into sliding, can be expressed as

xR = −
a
(√

9FN 2 µ2 + 4 a4 k2 ψ2 − 12FN a e k µψ sign (ψ) − 2 a2 k ψ sign (ψ)
)

3FN µ
,

xL =
a
(√

9FN 2 µ2 + 4 a4 k2 ψ2 + 12FN a e k µψ sign (ψ) − 2 a2 k ψ sign (ψ)
)

3FN µ
.

Deformation function parameters for five fragmentation zones

The parameters of the deformation function with five zones, in case of positive angular
direction can be expressed as

x∗
R = −

a
(√

9FN 2 µ2 + 4 a4 k2 ψmax
2 − 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax)

)
3FN µ

,

x∗
L =

a
(√

9FN 2 µ2 + 4 a4 k2 ψmax
2 + 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax)

)
3FN µ

,

mR = − num (mR)
denum (mR) ,

num (mR) = e ψ+

+

3FN µ

a2 −
a2
(√

9FN
2 µ2+4 a4 k2 ψmax2−12FN a e k µψmax sign(ψmax)−2 a2 k ψmax sign(ψmax)

)2

9FN
2 µ2


4 a3 k

+

+
aψ

(√
9FN 2 µ2 + 4 a4 k2 ψmax

2 − 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax)
)

3FN µ
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denum (mR) = e+

+
0.3333 a

(√
9FN 2 µ2 + 4 a4 k2 ψmax

2 − 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax)
)

FN µ
,

mL = num (mL)
denum (mL) ,

num (mL) =

3FN µ

a2 −
a2
(√

9FN
2 µ2+4 a4 k2 ψmax2+12FN a e k µψmax sign(ψmax)−2 a2 k ψmax sign(ψmax)

)2

9FN
2 µ2


4 a3 k

−

−e ψ+
aψ

(√
9FN 2 µ2 + 4 a4 k2 ψmax

2 + 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax)
)

3FN µ
,

denum (mL) = e−

−
0.3333 a

(√
9FN 2 µ2 + 4 a4 k2 ψmax

2 + 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax)
)

FN µ
,

xR =

a3 k

σ1

σ2
−

√√√√√σ1
2

σ22 −
6FN µ

(
e σ1

σ2
− 3FN µ

2 a k

)
a3 k


FN µ

,

σ1 = e ψ +
3FN µ

(
a2 − a2 σ3

2

9FN 2 µ2

)
4 a3 k

,

σ2 = e+ a σ3

3FN µ
,

σ3 =
√

9FN 2 µ2 + 4 a4 k2 ψmax
2 − 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax) ,

xL =

a3 k

σ4

σ5
+

√√√√√σ4
2

σ52 −
6FN µ

(
e σ4

σ5
− 3FN µ

2 a k

)
a3 k


FN µ

,

σ4 = −e ψ +
3FN µ

(
a2 − a2 σ6

2

9FN 2 µ2

)
4 a3 k

,

σ5 = e− a σ3

3FN µ
,

σ6 =
√

9FN 2 µ2 + 4 a4 k2 ψmax
2 + 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax) .
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And then, the parameters of the deformation function with five zones, in case of negative
angular direction can be expressed as

x∗
R = −

a
(√

9FN 2 µ2 + 4 a4 k2 ψmax
2 − 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax)

)
3FN µ

,

x∗
L =

a
(√

9FN 2 µ2 + 4 a4 k2 ψmax
2 + 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax)

)
3FN µ

,

mR = − num (mR)
denum (mR) ,

num (mR) = e ψ−

−

3FN µ

a2 −
a2
(√

9FN
2 µ2+4 a4 k2 ψmax2−12FN a e k µψmax sign(ψmax)−2 a2 k ψmax sign(ψmax)

)2

9FN
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4 a3 k

+

+
aψ

(√
9FN 2 µ2 + 4 a4 k2 ψmax

2 − 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax)
)

3FN µ
,
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+
a
(√

9FN 2 µ2 + 4 a4 k2 ψmax
2 − 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax)

)
3FN µ

,

mL = − num (mL)
denum (mL) ,

num (mL) = e ψ+

+

3FN µ

a2 −
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(√

9FN
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)
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,
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xR = −

a3 k

σ7

σ8
+

√√√√√σ7
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6FN µ
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e σ7
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+ 3FN µ

2 a k
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2
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− 3FN µ

2 a k
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3FN µ
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3FN µ
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2

9FN 2 µ2

)
4 a3 k

− aψ σ12

FN µ
,

σ11 = e− a σ12

3FN µ
,

σ12 =
√

9FN 2 µ2 + 4 a4 k2 ψmax
2 + 12FN a e k µψmax sign (ψmax) − 2 a2 k ψmax sign (ψmax) ,

where σ1 . . . σ12 are parameters created, in order to ease the description of the given
expressions.

Analytic estimation results for simulated data

The results of the analytic estimation for simulated data, are shown here (only those
cases, that were not showed in the documentation).
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Figure 6.1: Analytic coefficient of friction estimation with simulated data for µ = 1.
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Figure 6.2: Analytic coefficient of friction estimation with simulated data for µ = 1.8.
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Analytic estimation results for measured data
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Figure 6.3: Estimation results, for the black emery paper, with contact patch half-length
of a = 40 mm
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Figure 6.4: Estimation results, for the black emery paper, with contact patch half-length
of a = 40 mm
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Figure 6.5: Estimation results, for the black emery paper, with contact patch half-length
of a = 40 mm
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Figure 6.6: Estimation results, for the black emery paper, with contact patch half-length
of a = 45 mm
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Figure 6.7: Estimation results, for the black emery paper, with contact patch half-length
of a = 45 mm
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Figure 6.8: Estimation results, for the black emery paper, with contact patch half-length
of a = 45 mm
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Figure 6.9: Estimation results, for the black emery paper, with contact patch half-length
of a = 50 mm
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Figure 6.10: Estimation results, for the black emery paper, with contact patch half-
length of a = 50 mm
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Figure 6.11: Estimation results, for the metal sheet, with contact patch half-length of
a = 40 mm
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Figure 6.12: Estimation results, for the metal sheet, with contact patch half-length of
a = 40 mm

0 5 10 15 20

Time [s]

0

1

2

3

4

5

6

7

8

C
o

e
ff

ic
ie

n
t 

o
f 

fr
ic

ti
o

n
 [

1
]

Measured

Estimated

State change

Figure 6.13: Estimation results, for the metal sheet, with contact patch half-length of
a = 45 mm
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Figure 6.14: Estimation results, for the metal sheet, with contact patch half-length of
a = 45 mm
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Figure 6.15: Estimation results, for the metal sheet, with contact patch half-length of
a = 50 mm
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Figure 6.16: Estimation results, for the metal sheet, with contact patch half-length of
a = 50 mm
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Figure 6.17: Estimation results, for the red emery paper, with contact patch half-length
of a = 40 mm
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Figure 6.18: Estimation results, for the red emery paper, with contact patch half-length
of a = 40 mm
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Figure 6.19: Estimation results, for the red emery paper, with contact patch half-length
of a = 40 mm
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Figure 6.20: Estimation results, for the red emery paper, with contact patch half-length
of a = 45 mm
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Figure 6.21: Estimation results, for the red emery paper, with contact patch half-length
of a = 45 mm
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Figure 6.22: Estimation results, for the red emery paper, with contact patch half-length
of a = 50 mm
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Figure 6.23: Estimation results, for the red emery paper, with contact patch half-length
of a = 50 mm
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Comparing charts of the estimation results for the validation
measurements
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Figure 6.24: Comparing the results of each estimation method for the first validation
measurement.
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Figure 6.25: Comparing the results of each estimation method for the second validation
measurement.

71



0 5 10 15 20

Time [s]

0

1

2

3

4

5

6

7

8

C
o

e
ff

ic
ie

n
t 

o
f 

fr
ic

ti
o

n
[1

]

Measured

Analytic estim.

Neur. network estim.

SciML estim.

Figure 6.26: Comparing the results of each estimation method for the third validation
measurement.
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Figure 6.27: Comparing the results of each estimation method for the fourth validation
measurement.
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Figure 6.28: Comparing the results of each estimation method for the fifth validation
measurement.
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Figure 6.29: Comparing the results of each estimation method for the sixth validation
measurement.
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foglaltaknak megfelelően az azonosításra visszavezetett  dokumentumhitelesítés szolgáltatás
keretében hitelesített dokumentum teljes bizonyító erővel rendelkezik.


A  szolgáltatásra  vonatkozó  részletes  tájékoztató  elérhető  a  szolgáltató  honlapján:
https://magyarorszag.hu/szuf_avdh_feltoltes.


A szolgáltató a Központi Azonosítási Ügynökön (KAÜ) keresztül elérhető azonosító szolgáltatást
vette igénybe annak megállapítására, hogy a csatolt eredeti elektronikus dokumentum GYÖRÖK
BENDEGÚZ MÁTÉ ügyféltől származik.


Az azonosítás időpontja: 2022.12.27. 18.14.29


Az azonosított ügyfél adatai:


Születési név: GYÖRÖK BENDEGÚZ MÁTÉ
Születési hely: BUDAPEST                 12
Születési dátum: 2001.01.05.
Anyja neve: PALCSEK ORSOLYA


Ez az elektronikus dokumentum két, egymástól elválaszthatatlanul összetartozó részből, az eredeti dokumentumból és záradékból áll.
Az Igazolás című jelen záradék az eredeti elektronikus dokumentum csatolt melléklete. A záradék olvasható szöveges formában rögzíti
az eredeti dokumentum hiteles elektronikus aláírással való ellátásának körülményeit és az ezzel kapcsolatos egyéb adatokat.



https://magyarorszag.hu/szuf_avdh_feltoltes
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